In the last decade, DQC scientists pioneered the simulation of semi-tunable quantum Hamiltonian models based on trapped atomic ions as interacting spins; much this research will appear in an upcoming Review of Modern Physics article.
In 2015, we designed and built the first fully-connected and reconfigurable universal quantum computer. This device competed favorably with behemoth industry quantum computer systems offered on the cloud—but we were just getting started.
In 2017 we designed and built the world’s most powerful quantum computer, with up to 32 fully-connected qubits and better then 99 percent fidelity on gates. This system was unleashed in 2019, has been running remotely and semi-autonomously since February 2020, and we are now operating and building two next-generation systems.
Along the way, our team has formed a large number of collaborations with researchers worldwide, who generally come to us with a research problem in their own field—from condensed-matter and nuclear physics to cosmology and game theory. Below we list the collaborations, many of which produced new science in the form of a publication.
Ion Trap Clients
Year | Type | Owner | Application | #Qbts | #Ops | Reference | Collaborator | Institute |
---|---|---|---|---|---|---|---|---|
2013 | Analog | Monroe | Frustration and AFM order | 16 | 10 | Science 340, 583 | J. Freericks | Georgetown |
2014 | Analog | Monroe | Lieb-Robinson propagation | 11 | 0.5 | Nature 511, 198 | A. Gorshkov | NIST |
2015 | Analog | Monroe | Spin-1 Dynamics | 4-6 | 8 | Phys. Rev. X 5, 021026 | A. Retzker | Hebrew Univ. |
2016 | Analog | Monroe | Manybody Localization | 10 | 8 | Nat. Physics 12, 907 | D. Huse, P. Hauke | Princeton, Univ. Innsbruck |
2017 | Gate | Monroe | Hidden Shift, Toffoli-3 Gate | 5 | 12-60 | PNAS 114, 3305 | M. Roetteler | Microsoft |
2017 | Gate | Monroe | Grover | 5 | 65 | Nat. Comm. 8, 1918 | D. Maslov | NSF |
2017 | Gate | Monroe | [[4,2,2]] Error Detection | 5 | 27-32 | Science Adv. 3, e1701074 | K. Brown | Duke |
2017 | Analog | Monroe | Prethermalization | 22 | 23 | Science Adv. 3, e1700672 | Z. Gong, A. Gorshkov | NIST |
2017 | Analog | Monroe | Time Crystals | 10 | 50 | Nature 543, 217 | N. Yao | Berkeley |
2017 | Analog | Monroe | Dynamical Phase Transition | 8-53 | 3-6 | Nature 551, 601 | A. Gorshkov | NIST |
2018 | Gate | Monroe | Toffoli-4 Gate | 5 | 33 | Thesis, C. Figgatt | D. Maslov | NSF |
2018 | Gate | Monroe | Fredkin Gate, Fermi-Hubbard Renyi entr. | 5 | 163 | PRA 98, 052334 | S. Johri | Intel |
2018 | Gate | Monroe | Bayesian Game | 5 | 20 | QST 3, 045002 | N. Solmeyer | ARL |
2018 | Gate | Monroe | Qubit Detection ML | 5 | n/a | J. Phys. B 51 174006 | M. Hafezi | JQI/UMaryland |
2018 | Gate | Linke | CHSH game | 4 | 6 | experiment completed | Xingyao Wu | QuICS/UMaryland |
2019 | Gate | Monroe | Full Adder, Parallel CNOTs | 4 | 20 | Nature 567, 61 | D. Maslov | NSF |
2019 | Gate | Monroe | Generative Modeling ML | 4 | 48 | Science Adv. 5, eaaw9918 | A. Perdomo-Ortiz | NASA |
2019 | Gate | Monroe | Quantum Scrambling | 7 | 45 | Nature 567, 61 | B. Yoshida, N. Yao | Perimeter, Berkeley |
2019 | Gate | Linke | Deuteron VQE Simulation | 3 | 65 | PRA 100, 062319 | R. Pooser, O. Shehab | Oak Ridge |
2019 | Gate | Linke | Benchmarks and Comparison | 7 | 90 | ISCA 2019, 527 | M. Martonosi | Princeton |
2019 | Gate | Linke | Lattice Gauge Thy | Phys. Rev. Res. 2, 023015 | Z. Davoudi | UMaryland | ||
2019 | Gate | Linke | Validating stabilizer states | 3 | 10 | Phys. Rev. A 99, 042337 | Amir Kalev | QuICS/UMaryland |
2019 | Gate | Linke | Efficient QAOA (Max-cut, Deuteron) | 5 | 20 | arXiv:1906.00476 | Isaac Kim, Omar Shehab | Stanford, IonQ |
2019 | Gate | Linke | Dynamical mean field theory | 4 | 50 | arxiv: 1910.04735 | Ross Duncan, Ivan Rungger | CQC, NPL |
2019 | Analog | Monroe | Analog QAOA | 15-40 | 6 | PNAS 117, 25396 | A. Gorshkov, S. Jordan | NIST, Microsoft |
2020 | Gate | Linke | Circuit QAOA, TFD state generation | 9 | 92 | PNAS 117, 25402 | T. Hsieh, S. Johri | Perimeter, Intel |
2020 | Gate | Linke | Quantum walks theory | – | – | arXiv:2001.11197 | B. Radhakrishnan, C. Chandrashekar | ARL, Chennai |
2020 | Gate | Linke | Quantum walks, cellular automaton | 5 | 113 | Nature Comm. 11, 3720 | B. Radhakrishnan, C. Chandrashekar | ARL, Chennai |
2020 | Gate | Linke | Lee-Yang Zeroes | 5 | 70 | arXiv:2009.04648 | Lex Kemper | NCSU |
2020 | Analog | Monroe | Quasiparticle Confinement | 40 | 8 | Nature Physics, in press | A. Gorshkov | NIST |
2020 | Analog | Monroe | Many-body dephasing | 10 | 10 | Phys. Rev. Lett. 125, 120605 | F. Marquardt, L. Guo | MPL Erlangen |
2020 | Gate | Monroe | Circuit-based MBL | 3-9 | 50 | arXiv 2006.12355 | A. Matsuura, S. Johri | Intel |
2021 | Gate | Cetina | [[9,1,3]] Bacon/Shor code | 13 | 54? | arXiv 2009.11482 | K. Brown | Duke |
2021 | Gated | Linke | Ising Scattering | 4 | 95 | manuscript in preparation | Yannick Meurice | Iowa State |
2021 | Gate | Linke | Schwinger model simulation | 2-6 | >200 | experiment in progress | Zohreh Davoudi | UMaryland |
2021 | Gate | Linke | Envariance | experiment in progress | Wojciech Zurek | Los Alamos | ||
2021 | Gate | Linke | para-Boson digital simulation | 3 | 12 | experiment completed | Blas R. Lara | INAOE (Mexico) |
2021 | Gate | Linke | Edge-cover problem QAOA | experiment in progress | B. Sundar (Zoller), K. Hazzard | Innsbruck, Rice | ||
2021 | Gate | Linke | Fourier-series MS-gate | 2 | 1 | experiment in progress | Nikodem Grzesiak | IonQ |
2021 | Gate | Linke | Triangle game | 6 | experiment in progress | Akimasa Miyake | Univ. New Mexico | |
2021 | Gate | Linke | para-Fermion simulation | experiment completed | Blas R. Lara | INAOE (Mexico) | ||
2021 | Gate | Linke | Molecular Cluster simulations | 7 | experiment in preparation | Nicolas Sawaya | Intel | |
2021 | Gate | Linke | Ring-molecule dynamics | preliminary discussions | Rob Parrish | QCWare | ||
2021 | Gate | Cetina | NMR inference | 5-13 | experiment in preparation | Eugene Demler | Harvard | |
2021 | Gate | Noel | Phase transitions & measurement | 5-21 | experiment in progress | Michael Gullens, David Huse | Princeton, NIST | |
2021 | Gate | Linke | Chaos-QAOA | preliminary discussions | Gregory Quiroz, O. Shehab | APL, IonQ | ||
2021 | Gate | Linke | GAN-compression of circuits | preliminary work in progress | Xiaodi Wu | QuICS/UMaryland | ||
2021 | Gate | Linke | QFT- based benchmarking | preliminary discussions | Yannick Meurice | Iowa State | ||
2021 | Gate | Linke | Block-diagonalization via Grover | preliminary discussions | Sonika Johri | IonQ | ||
2021 | Gate | Monroe, Linke | multi-platform quantum volumetry | preliminary discussions | Ross Duncan | CQC | ||
2021 | Gate | Linke | term-ordered VQE | preliminary discussions | Teague Tomesch | Princeton | ||
2021 | Gate | Linke | Cluster state generation | preliminary discussions | R. Raussendorf, V. Scarano | UBC, Virginia Tech | ||
2021 | Gate | Monroe | Cross platform benchmarking | 9 | preliminary discussions | Peter Zoller | Innsbruck | |
2021 | Gate | Linke | block-optimized VQE | preliminary discussions | Christian Kokail | Innsbruck | ||
2021 | Gate | Monroe | DMERA circuits | preliminary discussions | Stephen Jordan, Brian Swingle | Microsoft, Brandeis | ||
2021 | Gate | Linke | toric code | preliminary discussions | Stephen Jordan, Brian Swingle | Microsoft, Brandeis | ||
2021 | Analog | Monroe | Phase transitions & measurement | preliminary discussions | N. Yao | Berkeley |