Title | Fault-tolerant weighted union-find decoding on the toric code |
Publication Type | Journal Article |
Year of Publication | 2020 |
Authors | S Huang, M Newman, and KR Brown |
Journal | Physical Review A |
Volume | 102 |
Issue | 1 |
Date Published | 07/2020 |
Abstract | © 2020 American Physical Society. Quantum error correction requires decoders that are both accurate and efficient. To this end, union-find decoding has emerged as a promising candidate for error correction on the surface code. In this work, we benchmark a weighted variant of the union-find decoder on the toric code under circuit-level depolarizing noise. This variant preserves the almost-linear time complexity of the original while significantly increasing the performance in the fault-tolerance setting. In this noise model, weighting the union-find decoder increases the threshold from 0.38% to 0.62%, compared to an increase from 0.65% to 0.72% when weighting a matching decoder. Further assuming quantum nondemolition measurements, weighted union-find decoding achieves a threshold of 0.76% compared to the 0.90% threshold when matching. We additionally provide comparisons of timing as well as low error rate behavior. |
DOI | 10.1103/PhysRevA.102.012419 |
Short Title | Physical Review A |