Low-energy physics of isotropic spin-1 chains in the critical and Haldane phases

TitleLow-energy physics of isotropic spin-1 chains in the critical and Haldane phases
Publication TypeJournal Article
Year of Publication2020
AuthorsM Binder, and T Barthel
JournalPhysical Review B
Volume102
Issue1
Date Published07/2020
Abstract

© 2020 American Physical Society. Using a matrix product state algorithm with infinite boundary conditions, we compute high-resolution dynamic spin and quadrupolar structure factors in the thermodynamic limit to explore the low-energy excitations of isotropic bilinear-biquadratic spin-1 chains. Haldane mapped the spin-1 Heisenberg antiferromagnet to a continuum field theory, the nonlinear sigma model (NLσM). We find that the NLσM fails to capture the influence of the biquadratic term and provides only an unsatisfactory description of the Haldane phase physics. But several features in the Haldane phase can be explained by noninteracting multimagnon states. The physics at the Uimin-Lai-Sutherland point is characterized by multisoliton continua. Moving into the extended critical phase, we find that these excitation continua contract, which we explain using a field-theoretic description. New excitations emerge at higher energies and, in the vicinity of the purely biquadratic point, they show simple cosine dispersions. Using block fidelities, we identify them as elementary one-particle excitations and relate them to the integrable Temperley-Lieb chain.

DOI10.1103/PhysRevB.102.014447
Short TitlePhysical Review B